欧几里德


欧几里得(Euclid, 约公元前325年—公元前265年)是古希腊数学家,以其所著的《几何原本》(简称《原本》)闻名于世。曾受业于柏拉图学园。后应埃及托勒密国王邀请,从雅典移居亚历山大,从事数学教学和研究工作。他一生治学严谨。所著《几何原本》共13卷,是世界上最早公理化的教学著作,影响着历代科学文化的发展和科技人才的培养。

欧几里德 - 人物简介

欧几里德虽然生长于巴尔干半岛的雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。

他的生平,后人所知甚少。大概早年在雅典就读,深悉柏拉图的学说。公元前300年左右,欧几里德接受托勒密王(公元前364~公元前283)的邀请,来到亚历山大城,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对投机取巧、不肯刻苦钻研的作风,也反对狭隘实用观点。

欧几里德将公元前7世纪以来希腊几何积累起来的既丰富又纷纭庞杂的结果整理在一个严密统一的体系中,从最原始的定义开始,列出5条公理和5条公设为基础.通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何的第一个公理化的数学体系。据记载,亚历山大里亚的统治者托勒密一世曾问他学习几何有无简捷的方法,欧几里得回答:“在几何里,没有专为国王铺设的大道”这句话后来成为传诵千古的学习箴言.他的著作除《几何原本》之外,还有不少,可惜大都失传,《已知数》和《图形的分割》是保存下来的著作。

古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。

欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。” 欧氏还有《已知数》《图形的分割》等著作。

欧几里德 - 成长经历

关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说:“几何无王者之路。”意思是,在几何里,没有专为国王铺设的大道。这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。欧几里得生于雅典,是柏拉图的学生。他的科学活动主要是在亚历山大进行的,在这里,他建立了以他为首的数学学派。

欧几里得,以他的主要著作《几何原本》而著称于世,他的工作重大意义在于把前人的数学成果加以系统的整理和总结,以严密的演绎逻辑,把建立在一些公理之上的初等几何学知识构成为一个严整的体系。欧几里得建立起来的几何学体系之严谨和完整,就连20世纪最杰出的大科学家爱因斯坦也不能对他不另眼相看。爱因斯坦说:“一个人当他最初接触欧几里得几何学时,如果不曾为它的明晰性和可靠性所感动,那么他是不会成为一个科学家的。”

《几何原本》中的数学内容也许没有多少为他所创,但是关于公理的选择,定理的排列以及一些严密的证明无疑是他的功劳,在这方面,他的工作出色无比。欧几里得的《几何原本》共有13篇,首先给出的是定义和公理。比如他首先定义了点、线、面的概念。他整理的5条公理其中包括:1、从一点到另一任意点作直线是可能的;2、所有的直角都相等;3、a=b,b=c,则a=c;4、若a=b则a+c=b+c等等。这里面还有一条公理是欧几里得自己提出的,即:整体大于部分。虽然这条公理不像别的公理那么一望便知,不那么容易为人接受,但这是欧氏几何中必须的,必不可少的。他能提出来,这恰恰显示了他的天才。

《几何原本》第1~4篇主要讲多边形和圆的基本性质,像全等多边形的定理,平行线定理,勾股弦定理等。第2篇讲几何代数,用几何线段来代替数,这就解决了希腊人不承认无理数的矛盾,因为有些无理数可以用作图的方法,来把它们表示出来。第3篇讨论圆的性质,如弦、切线、割线,圆心角等。第4篇讨论圆的内接和外接图形。第5篇是比例论。这一篇对以后数学发展史有重大关系。第6篇讲的是相似形。其中有一个命题是:直角三角形斜边上的矩形,其面积等于两直角边上的两个与这相似的矩形面积之和。读者不妨一试。第7、8、9篇是数论,即讲述整数和整数之比的性质。第10篇是对无理数进行分类。第11~13篇讲的是立体几何。全部13篇共包含有467个命题。《几何原本》的出现说明人类在几何学方面已经达到了科学状态,在经验和直觉的基础上建立了科学的、

逻辑的理论。欧几里得,这位亚历山大大学的数学教授,已经把大地和苍天转化为一幅由错综复杂的图形所构成的庞大图案。他又运用他的惊人才智,指挥灵巧的手指将这个图案拆开,分成为简单的组成部分:点、线、角、平面、立体——把一幅无边无垠的图,译成初等数学的有限语言。尽管欧几里得简化了他的几何学,但他坚持对几何学的原则进行透彻的研究,以便他的学生们能充分理解它。

据说,亚历山大国王多禄米曾师从欧几里得学习几何,有一次对于欧几里得一遍又一遍地解释他的原理表示不耐烦。国王问道:“有没有比你的方法简捷一些的学习几何学的途径?”欧几里得答道:“陛下,乡下有两种道路,一条是供老百姓走的难走的小路,一条是供皇家走的坦途。但是在几何学里,大家只能走同一条路。走向学问,是没有什么皇家大道的,请陛下明白。”欧几里得的这番话后来推广为“求知无坦途”,成为传诵千古的箴言。

关于欧几里得的一生的细节,由于资料缺乏,我们知道得很少。有一个故事说的是欧几里得和妻子吵架,妻子很为恼火。妻子说:“收起你的乱七八糟的儿何图形,它难道为你带来了面包和牛肉。”欧几里得天生是个憨脾气,只是笑了笑,说道:“妇人之见,你知道吗?我现在所写的,到后世将价值连城!”妻子嘲笑道:“难道让我们来世再结合在一起吗?你这书呆子。”欧几里得刚要分辩,只见妻子拿起他写的《几何原本》的一部分投入火炉中。欧几里得连忙来抢,可是已经来不及了。据说妻子烧掉的是《几何原本》中最后最精彩的一章。但这个遗憾是无法弥补的,她烧的不仅仅是一些有用的书,她烧的是欧几里得血汗和智慧的结晶。如果上面这个故事是真的,那么他妻子的那场震怒可能并不是欧几里得引起来的。因为古代的作家们告诉我们,他是一个“温和慈祥的老头。”

由于欧几里得知识的渊博,他的学生们简直把他当作偶像来崇拜。欧几里得在教授学生时,像一个真正的父亲那样引导他们,关心他们。然而有时,他也用辛辣的讽刺来鞭挞学生中比较傲慢的,使他们驯服。有一个学生在学习了第一定理之后,便问道:“学习几何,究竟会有什么好处?”于是,欧几里得转身吩咐佣人说:“格鲁米阿,拿三个钱币给这位先生,因为他想在学习中获得实利。”

欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧的作风,更反对狭隘的实用观念。后来者帕波斯就特别赞赏他这谦逊的品德。像古希腊的大多数学者一样,欧几里德对于他的科学研究的“实际”价值是不大在乎的。他喜爱为研究而研究。他羞怯谦恭,与世无争,平静地生活在自己的家里。在那个到处充满勾心斗角的世界里,对于人们吵吵闹闹所作出的俗不可耐的表演,则听之任之。他说:“这些浮光掠影的东西终究会过去,但是,星罗棋布的天体图案,却是永恒地岿然不动。”欧几里得除了写作重要几何学巨著《几何原本》外,还著有《数据》、《图形分割》、《论数学的伪结论》、《光学》、《反射光学之书》等著作。

欧几里德 - 辉煌成就

主要成就

欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。

《几何原本》作为教科书使用了两千多年。在古今中外成文的教科书之中,无疑它是最成功的。欧几里德的杰出工作,使以前类似的论述黯然失色。《几何原本》问世之后,很快取代了以前所有的几何教科书。《几何原本》是用希腊文写成的,后来被翻译成多种文字。它一直以手抄本流传了上千年,而首次印刷出版于1482年,即哥登堡发明活字印刷术30多年之后。自那时以来,《几何原本》出了上千种不同的版本,广为流传和普及,以至在19世纪成为中学教科书。

突出贡献

欧几里得将公元前7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体结果。还有一些著作未能确定是否属于欧几里得所著,而且已经散失。欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。

欧几里德 - 历史地位

欧几里德写过另外几本书,其中有些流传至今。然而确立他历史地位的,主要是那本伟大的几何教科书《几何原本》。《几何原本》的重要性并不在于书中提出的哪一条定理。书中提出的几乎所有的定理在欧几里德之前就已经为人知晓,使用的许多证明亦是如此。欧几里得的伟大贡献在于他将这些材料做了整理,并在书中作了全面的系统阐述。这包括首次对公理和公设作了适当的选择(这是非常困难的工作,需要超乎寻常的判断力和洞察力)。然后,他仔细地将这些定理做了安排,使每一个定理与以前的定理在逻辑上前后一致。在需要的地方,他对缺少的步骤和木足的证明也作了补充。值得一提的是,《几何原本》虽然基本上是平面和立体几何的发展,也包括大量代数和数论的内容。

《几何原本》作为教科书使用了两千多年。在形成文字的教科书之中,无疑它是最成功的。欧几里得的杰出工作,使以前类似的东西黯然失色。该书问世之后,很快取代了以前的几何教科书,而后者也就很快在人们的记忆中消失了。《几何原本》是用希腊文成的,后来被翻译成多种文字。它首版于1482年,即谷登堡发明活字印刷术3O多年之后。自那时以来,《几何原本》已经出版了上千种不同版本。

在训练人的逻辑推理思维方面,《几何原本》比亚里土多德的任何一本有关逻辑的著作影响都大得多。在完整的演绎推理结构方面,这是一个十分杰出的典范。正因为如此,自本书问世以来,思想家们为之而倾倒。公正地说,欧几里得的这本著作是现代科学产生的一个主要因素。科学绝不仅仅是把经过细心观察的东西和小心概括出来的东西收集在一起而已。科学上的伟大成就,就其原因而言,一方面是将经验同试验进行结合;另一方面,需要细心的分析和演绎推理。我们不清楚为什么科学产生在欧洲而木是在中国或日本。但可以肯定地说,这并非偶然。毫无疑问,像牛顿、伽利略、白尼和凯普勒这样的卓越人物所起的作用是极为重要的。也许一些基本的原因,可以解释为什么这些出类拔革的人物都出现在欧洲,而不是东方。或许,使欧洲人易于理解科学的一个明显的历史因素,是希腊的理性主义以及从希腊人那里流传下来的数学知识。对于欧洲人来讲,只要有了几个基本的物理原理,其他都可以由此推演而来的想法似乎是很自然的事。因为在他们之前有欧里得作为典范(总的来讲,欧洲人不把欧几里得的几何学仅仅看作是抽象的体系;他们认为欧几里得的公设,以及由此而来的定理都是建立在客观现实之上的)。

上面提到的所有人物都接受了欧几里得的传统。他们的确都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设逻辑地推导出来的。许多数学家,像伯莎德·罗素、阿尔弗雷德·怀特海,以及一些哲学家,如斯宾诺莎也都如此。同中国进行比较,情况尤为令人瞩目。

多少个世纪以来,中国在技术方面一直领先于欧洲。但是从来没有出现一个可以同欧几里得对应的中国数学家。其结果是,中国从未拥有过欧洲人那样的数学理论体系(中国人对实际的几何知识理解得不错,但他们的几何知识从未被提高到演绎体系的高度)。直到1600年,欧几里得才被介绍到中国来。此后,又用了几个世纪的时间,他的演绎几何体系才在受过教育的中国人之中普遍知晓。在这之前,中国人并没有从事实质性的科学工作。在日本,情况也是如此。直到18世纪,日本人才知道欧几里得的著作,并且用了很多年才理解了该书的主要思想。尽管今天日本有许多著名的科学家,但在欧几里得之前却没有一个。人们不禁会问,如果没欧几里得的奠基性工作,科学会在欧洲产产吗?如今,数学家们已经记识到,欧几里得的几何学并不是能够设计出来的惟一的一种内在统一的几何体系。在过去的150年间,人们已经创立出许多非欧几里得几何体系。自从爱因斯坦的广义相对论被接受以来,人们的确已经认识到,在实际的宇宙之中,欧几里得的几何学并非总是正确的。便如,在黑洞和中子星的周围,引力场极为强烈。在这种情况下,欧几里得的几何学无法准确地描述宇宙的情况。但是,这些情况是相当特殊的。在大多数情况下,欧几里得的几何学可以给出十分近似于现实世界的结论。

不管怎样,人类知识的这些最新进展都不会水削弱欧向里得学术成就的光芒。也不会因此贬低他在数学发展和建立现代科学成长必不可少的逻辑框架方面的历史重要性。

欧几里德 - 《几何原本》

《几何原本》起到了锻炼人们逻辑思维的作用,其影响远远超过了亚里士多德的任何一篇逻辑论文。它是严谨的逻辑推理体系的杰作,因此自从问世以来对任何伟大的思想家都具有巨大的魔力。

欧几里德这部巨著是现代科学崛起的一个重要因素,这种说法不无道理。科学不只是准确的观察和精辟概括的集合。现代科学的伟大成就一部分是经验论和实验法相结合的产物,另一部分是认真分析和逻辑演绎相结合的产物。

不能确切地知道科学为什么出现在欧洲而不是中国,但是可以有把握地认为这并非仅仅出于偶然。当然象牛顿、伽利略和哥白尼这样的杰出人物起了极其重要的作用,但是这样的人才在欧洲大量涌现看来是有其内在的原因的。欧洲朝着科学方向发展最明显的历史因素也许就是希腊的唯理论和希腊人遗赠西欧的数学知识。值得注意的是中国虽然有不少世纪在技术方面都比欧洲先进,但是却从未掌握西欧的数学理论基础。没有哪一位中国数学家可以和欧几里德媲美。中国人有很好的实用几何学知识,但是他们的几何学知识却从来未形成推理体系。

从几个基本物理学定律可以推导出任何其它定律,欧洲人认为这种思想是天经地义的,因为在他们面前有欧几里德这样的权威。一般说来欧洲人并未把欧几里德几何仅仅看作是一个抽象的体系,而是认为欧几里德公理和定律真实地反映了客观世界。

欧几里德对艾萨克·牛顿的影响尤为突出,因为牛顿的伟大著作《原理》是用“几何”形式,即用《几何原本》相类似的形式写成的。许多不同的科学家都竭力效仿欧几里德,他们试图把自己所有的结论都合乎逻辑地从少数几个原始前提下推导出来。象罗素和怀特默德这样著名的数学家和斯宾诺莎这样的哲学家都做过这种尝试。

今天的数学家终于明白了欧几里德几何并不是可以设计出来的唯一统一的几何学体系。在过去的一百五十年中,建立了许多门非欧几里德几何学。实际上自从爱因斯坦广义相对论被公认以来,科学家就认识到在客观的宇宙中欧几里德几何并不总是成立的。例如在黑洞和中子星相邻的区域内,重力场非常强,欧几里德几何学不能准确地描述出那个世界的模样,如此看来它也不能把宇宙作为整体来加以正确的描述。但是这些例子很特殊,欧几里德几何学在大多数情况下都能非常逼真地反映客观现实。人类知识的这些新的进展无论如何不能减少凝聚着欧几里德智慧的成就,也不能削弱他的历史意义。

欧几里德 - 几何算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b)=gcd(b,amodb)
证明:a可以表示成a=kb+r,则r=amodb
假设d是a,b的一个公约数,则有
d|a,d|b,而r=a-kb,因此d|r
因此d是(b,amodb)的公约数
假设d是(b,amodb)的公约数,则
d|b,d|r,但是a=kb+r
因此d也是(a,b)的公约数
因此(a,b)和(,amodb)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:
voidswap(int&a,int&b)
{
intc=a;
a=b;
b=c;
}
intgcd(inta,intb)
{
if(0==a)
{
returnb;
}
if(0==b)
{
returna;
}
if(a>b)
{
swap(a,b);
}
intc;
for(c=a%b;c>0;c=a%b)
{
a=b;
b=c;
}
returnb;
} 用PASCAL(DELPHI)语言可以描述为:
procedureswap(vara,b:integer);
var
c:integer;
begin
c:=a;
a:=b;
b:=c;
end;
functiongcd(a,b:integer):integer;
var
c:integer;
begin
ifa=0then
exit(b);
ifb=0then
exit(a);
ifa>bthen
swap(a,b);
repeat
c:=amodb;
a:=b;
b:=c;
untilc=0;
gcd:=b;
end;

欧几里德 - 相关知识

欧几里德几何 欧几里德算法
欧几里德空间 欧几里德除法
扩展欧几里德算法 非欧几里德几何

欧几里德 - 参考资料

1、http://baike.baidu.com/view/46032.htm

2、http://m.cqkp.cn/kjrw/11-2006/162448771.html

 

 

TAGS: 几何学 各国数学家 数学史 数学家 数学术语 荣誉人物
上一页: 欧多克索斯 下一页: 诺维科夫
相关名人更多>>
相关阅读更多>>
网站首页 | 网站地图 | 电脑版
个人简历网-移动版 m.gerenjianli.com